
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Implementation of Huffman Coding as Encryption

Algorithm Analysis

Ahmad Farid Mudrika - 135220081

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522008@itb.ac.id

Abstract—Huffman encoding stands as a cornerstone in file

compression, providing an efficient means to reduce data size. This

essay introduces a program designed to encode files using a

Huffman encoding tree derived from a base file. The

implementation incorporates binary trees and encryption

techniques, ensuring both compression and data security. The

essay delves into the intricacies of Huffman encoding, exploring

variable-length codes, codebook generation, and adaptive coding.

It addresses decoding algorithms to ensure successful retrieval of

the original data.

Keywords—Binary tree, Compression, Encryption, Huffman

encoding,

I. INTRODUCTION

In this nonstop era of digitalization, where everything is

turning digital, the quest for secure data transmission has

become increasingly crucial. While securing the transmission

itself is important, we can’t ignore the possibility of hijacking.

One of the way to secure the data itself is through encryption.

There have been many encryption algorithms explored. In this

paper, we will explore using Huffman encoding as an encryption

algorithm. Unlike traditional methods, which often involve

complex mathematical operations, Huffman encoding presents

a unique and innovative approach to data security. The proposed

method involves taking a base file, constructing the Huffman

tree based on its contents, and subsequently encoding other files

using the established tree structure. This approach not only adds

an extra layer of security to the data but also contributes to the

realm of encryption by integrating a well-established

compression technique.

The synergy between Huffman encoding and encryption aims

to provide a comprehensive solution that not only safeguards

data integrity but also optimizes storage space, acknowledging

the intertwined challenges of security and efficiency in the

digital landscape.

II. THEORETICAL BASIS

A. Binary Tree

A binary tree is a fundamental data structure in computer

science and mathematics that represents a hierarchical

organization of data in a graphical form. It falls under the

broader category of trees, which are acyclic, connected graphs.

The structure of a tree is hierarchical, resembling an inverted

tree with a single root node from which branches extend

downward. Each branching point in the tree is referred to as a

node, and the connections between nodes are known as

branches.

In a binary tree, each node can have at most two children,

known as the left child and the right child. The nodes connected

to these children are considered to be in a particular structural

direction, with the left child appearing to the left and the right

child appearing to the right. The unique characteristics of binary

trees make them particularly well-suited for various applications

in computer science, such as efficient searching algorithms, data

storage, and expression parsing.

The terminal nodes in a binary tree, those without any

children, are called leaves. These leaves are the endpoints of the

branches and represent the smallest units of the tree structure.

Importantly, every child in a binary tree is also a binary tree

itself, allowing for a recursive and hierarchical representation of

data.

Binary trees find applications in diverse domains, including

database structures, algorithm design, and syntax trees in

parsing. Their inherent hierarchical nature makes them useful

for representing relationships and dependencies between

different entities in a way that facilitates efficient traversal and

manipulation of the underlying data.

The structural simplicity of binary trees, with their clear left

and right directional references, contributes to their versatility in

algorithmic design. Algorithms such as binary search, which

leverages the ordered structure of binary search trees,

demonstrate the practical significance of binary trees in

achieving efficient search operations.

In summary, binary trees provide a flexible and hierarchical

structure for organizing data in computer science. Their

characteristics, including nodes, branches, leaves, and the binary

nature of children, make them essential in various computational

tasks, contributing to the development of efficient algorithms

and data structures.[1]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Figure 2.1 Binary Tree Illustration

https://www.javatpoint.com/binary-tree

B. Huffman Encoding

Huffman Encoding is a technique to compress data to reduce

its size without any loss in the details. It was first developed by

David Huffman. It uses binary tree as a media to compress the

data.

Huffman encoding can be done through several steps, which

are:[1]

1. Calculate the appearing frequency of each symbol in a

string.

Figure 2.2 Huffman encoding tutorial

https://www.programiz.com/dsa/huffman-coding

2. Sort the character in descending or ascending order. This

only serve to simplify the process, you don’t actually

need to do it. In the example below, we sort it in an

ascending order.

Figure 2.3 Huffman encoding tutorial

https://www.programiz.com/dsa/huffman-coding

3. Make a leaf node of each symbol.

4. Take out two symbol with the least frequency, make a

binary tree containing them. Whether the lesser

frequency is in the left or right node doesn’t matter, as

long as we are consistent with it. Store back the tree in

the symbol list, with the frequency being the sum of the

two’s frequency.

Figure 2.4 Huffman encoding tutorial

https://www.programiz.com/dsa/huffman-coding

5. Repeat step 4 until you are left with a one-element list

and a tree containing all of the symbol. This tree is called

the Huffman tree.

Figure 2.5 Huffman encoding tutorial

https://www.programiz.com/dsa/huffman-coding

6. Assign 0 or 1 on each edges of the tree. The order doesn’t

matter, as long as you do it consistently. In this example,

I assign 0 on the left edge, and 1 on the right.

Figure 2.6 Huffman encoding tutorial

https://www.programiz.com/dsa/huffman-coding

7. Each symbol is then recognized by a code. This code is

the edges taken to reach them from the root tree.

Figure 2.7 Code table of Huffman encoding

https://www.programiz.com/dsa/huffman-coding

https://www.javatpoint.com/binary-tree
https://www.programiz.com/dsa/huffman-coding
https://www.programiz.com/dsa/huffman-coding
https://www.programiz.com/dsa/huffman-coding
https://www.programiz.com/dsa/huffman-coding
https://www.programiz.com/dsa/huffman-coding
https://www.programiz.com/dsa/huffman-coding

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

III. PROGRAM IMPLEMENTATION

I use the code from https://www.javatpoint.com/huffman-

coding-using-python as a base and then change it to fit my

needs. The complete code is at my github,

https://github.com/frdmmm/Huffman-encoding.git.

A. Nodes Class

Figure 3.1 Node Class

Private Documentation

The Nodes class contains multiple elements, which are:

1. Probability

This stores the probability of the symbol appearing in the

string (frequency/string length).

2. Symbol

This stores the symbol represented by the node.

3. Left

This stores other node that is the left child of the node.

4. Right

This stores other node that is the right child of the node.

5. Code

This stores the code (in binary) that represents the

symbol.

B. Calculate Probability Function

Figure 3.2 Calculate Probability Function

(Source : Private Documentation)

This function calculates the frequency of a symbol appearing

in the string. It then returns a dictionary with the key being the

symbol, and the value is the frequency of that symbol appearing

in the string.

C. CalculateCodes Function

Figure 3.3 CalculateCodes Function

(Source : Private Documentation)

This function recursively call itself until the node parameter

is a leaf (a tree without a child), and then added the symbol of

the current node and its code to the external dictionary variable

the_codes, which it then returned.

D. OutputEncoded Function

Figure 3.4 OutputEncoded Function

(Source : Private Documentation)

This function takes a parameter called coding, which is a

dictionary with symbol as key and the code as a value, and

the_data, which is the string that we want to encode.

E. HuffmanEncoding Function

Figure 3.5 HuffmanEncoding Function

(Source : Private Documentation)

This function wraps the previous functions and returned

encodedoutput, which is the string(the_data) which have been

encoded using Huffman Encoding, and the_nodes[0], which is

the root of the tree. First, this function calculates the frequency

of each symbol in the_data string, make a list of nodes, which

https://www.javatpoint.com/huffman-coding-using-python
https://www.javatpoint.com/huffman-coding-using-python
https://github.com/frdmmm/Huffman-encoding.git

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

store all the leaf of the tree. It then does a loop until there is only

one element left in the list of nodes(the_nodes), in which it

create take out the two symbol with the least frequencies, make

a tree(node) with it, and put the resulted node back into the list

of nodes. It then get the code of each symbol in the tree in a

dictionary called huffmanEncoding using CalculateCodes

function, get the encoded string using OutputEncoded function,

and returns it along with the tree.

F. HuffmanEncodingWithBaseTree Function

Figure 3.6 HuffmanEncodingWithBaseTree Function

(Source : Private Documentation)

This function takes a parameter called the_data, which is the

string to be encoded, and base_tree, which is the tree to base the

encoding on. This then return the encodedOutput.

G. HuffmanDecoding Function

Figure 3.7 HuffmanDecoding Function

(Source : Private Documentation)

This function decode the encodedData variable using

huffmanTree variable as a base.

IV. ANALYSIS

We can use the program by calling python main.py with

several arguments, which are:

1. Basefile.

2. Encode or decode (e or d).

3. File to decode or encode.

The following test case use this as base.txt

Figure 4.1 base.txt

(Source : Private Documentation)

Figure 4.2 s.txt

(Source : Private Documentation)

Figure 4.3 Base Tree symbol dictionary

(Source : Private Documentation)

Figure 4.4 A part of encoded s.txt

(Source : Private Documentation)

Figure 4.5 File to store the encoded data

(Source : Private Documentation)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Figure 4.6 Decoding test1

(Source : Private Documentation)

You can store the encoded data as a txt file, but I don’t

recommend it. That is because when you store it as a txt file, it

will treat every single binary in the encoded file as a character,

and with each character being 8 bit long in the dictionary, it will

result in 8 times size increasement.

If we take a look at Fig.4.3, we see that most of the character

is represented as an 8 bit binary. This means that we will not see

any significant compression ratio. We can try to combat this by

making each character appearance frequency more diverse, or

making a base.txt that suits our need more.

If we change the base.txt to diversify the frequency of each

character, it will result in an overall shorter encoded file.

Figure 4.7 New base.txt

(Source : Private Documentation)

Figure 4.8 New base tree symbol dictionary

(Source : Private Documentation)

The size of the binary with the first base.txt is 10kb, and the

size after the change is 8kb. So, we can still get the compression

aspect of Huffman Coding. We just need to adjust our base.txt.

V. EVALUATION

Here are several pros and cons of using Huffman Coding as

an encryption algorithm.

Pros:

1. Compression Efficiency

Huffman coding excels at compressing data, representing

frequently occurring symbols with shorter codes. This

can lead to efficient use of storage space and reduced

transmission times.

2. Simple Implementation

The implementation of Huffman coding is relatively

simple and easy to understand, making it accessible for

educational purposes and practical applications where

simplicity is a priority.

3. Key-based Encryption

By using base.txt to generate the Huffman tree, we get a

key-based element to the encoding process. This adds a

layer of security, as the base.txt file is required in

encoding and decoding.

4. Easily Customizable Key

In traditional Huffman coding, the construction of the

Huffman tree is solely based on the frequency

distribution of symbols in the input data. However, by

incorporating a key.txt file, the encoding process

becomes more flexible and adaptable.

Cons:

1. Limited Security

While Huffman coding with a base.txt file adds an

additional layer of security, it is important to note that it

may not provide the same level of security and features

as dedicated encryption algorithms designed for

confidentiality.

2. No Encryption of Key.txt

Because the key.txt file is not itself encrypted or

protected, an attacker gaining access to the key could

potentially compromise the security of the encoded data.

So, we will need a very secure means of transmission to

send the base.txt.

3. Static Key

The base.txt file, once created, remains static unless

explicitly changed. This lack of dynamic adaptability can

be a limitation in scenarios where regular key changes

are desired for enhanced security.

4. No Integrity Verification

Huffman coding, by itself, does not provide integrity

verification. If an attacker tampers with the encoded data,

there is no built-in mechanism to detect or correct such

tampering.

VI. CONCLUSION

In conclusion, while Huffman coding may not be inherently

designed as an encryption algorithm, its unique characteristics

make it a viable option for encryption algorithm for small scale,

educational and personal purposes. The algorithm's efficiency in

data compression, customizable key management, and

simplicity of implementation contribute to its suitability for

educational settings where learners can gain hands-on

experience with encoding and decoding processes.

It should be noted, however, that Huffman coding have

limitations in terms of security when compared to dedicated

encryption algorithms. While it may serve educational and

personal needs effectively, for applications demanding robust

confidentiality and integrity, exploring established

cryptographic methods remains the recommended approach.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

VII. ACKNOWLEDGMENT

The author would like to express gratitude to several

parties for their contributions to this paper. First and foremost,

sincere thanks are extended to God for providing guidance

throughout the process of learning and writing. Additionally, the

author acknowledges the invaluable support and teachings

received from the lecturer of ITB Discrete Mathematics IF2120,

Mrs. Nur Ulfa Maulidevi. Her knowledge and guidance have

significantly enriched the learning experience in the class.

Special thanks are also extended to the author's family and

friends for their unwavering support throughout the entire

semester.

REFERENCES

[1] https://www.scaler.com/topics/data-structures/binary-tree-in-data-
structure/ accessed at December, 9 2023.

[2] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/23-

Pohon-Bag2-2023.pdf accessed at December 7 2023.
[3] https://www.javatpoint.com/huffman-coding-using-python accessed at

December 6, 2023

[4] https://www.programiz.com/dsa/huffman-coding accessed at December 8,

2023.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Desember 2023

Ahmad Farid Mudrika 13522008

https://www.scaler.com/topics/data-structures/binary-tree-in-data-structure/
https://www.scaler.com/topics/data-structures/binary-tree-in-data-structure/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/23-Pohon-Bag2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/23-Pohon-Bag2-2023.pdf
https://www.javatpoint.com/huffman-coding-using-python
https://www.programiz.com/dsa/huffman-coding

